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ABSTRACT: 

Over the last several decades, multiple environmental issues have led to dramatic changes in 

the water clarity of the Great Lakes. While many of the key factors are well-known and have 

direct anthropogenic origins, climatic variability and change can also impact water clarity at 

various temporal scales, but their influence is less often studied. Building upon a recent 

examination of the univariate relationships between synoptic-scale weather patterns and water 

clarity, this research utilizes nonlinear autoregressive models with exogenous input (NARX 

models) to explore the multivariate climate-to-water clarity relationship. Models trained on the 

observation period (1997-2016) are extrapolated back to 1979 to reconstruct a daily-scale 

historical water clarity dataset, and used in a reforecast mode to estimate real-time forecast 

skill. Of the 20 regions examined, models perform best in Lakes Michigan and Huron, especially 

in spring and summer. The NARX models perform better than a simple persistence model and a 

seasonal-trend model in nearly all regions, indicating that climate variability is a contributing 

factor to fluctuations in water clarity. Further, six of the 20 regions also show promise of useful 

forecasts to at least 1 week of lead-time, with three of those regions showing skill out to two 

months of lead time.  
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INTRODUCTION  

The Great Lakes contain 84% of North America’s fresh water and provide critical resources to 

the local economy and environment (e.g., Great Lakes related jobs accounted for $54 billion in 

annual compensation in 2007 in the state of Michigan alone; Vaccaro et al., 2009), with over 

30% of the gross domestic product of the United States and Canada coming from the region 

(Krantzberg and Boer, 2006, Smith et al., 2020). The Great Lakes provide countless services and 

opportunities for millions of Americans, supporting tourism and other economic uses such as 

fishing, boating, beach use and scuba diving. However, over the past decade, changes in human 

use and the introduction and migration of non-native mussel populations throughout the Great 

Lakes have rapidly altered the system (Nalepa et al., 2009), leading to changes in various water 

quality metrics, including water clarity. Due partly to this increase in the mussel population, 

many of the Great Lakes have experienced increasing water clarity (clearer water) via mussel 

filtering of phytoplankton (Binding et al., 2015, Cha et al., 2013). In turn, the reduced 

phytoplankton has diminished primary production, reducing the availability of food for fish and 

generally disrupting the natural ecosystem. The increased water clarity has also enhanced light 

penetration to the lake bottom, stimulating benthic plant growth (Ricciardi et al., 1997; 

Skubinna et al., 1995). At the same time, especially in Lake Erie, agricultural practices over the 

past several decades have led to decreased water clarity due to nutrient runoff from 

phosphorus-based fertilizers (Jarvie et al., 2017), resulting in seasonal algal blooms, some of 

which have contaminated city water systems (Steffen et al., 2017). 

 

These changes to Great Lakes water clarity stem mostly from anthropogenic factors.  However, 

climate change and shorter-term climate variability can also influence water clarity, though 

these factors are less well-understood. Precipitation has been shown to impact water clarity via 

suspended particles and organic matter discharged into the Great Lakes from connected 

streams, through water temperatures, wind speeds and other meteorological variables are also 

known to influence algal blooms and thus, water clarity (Michalak et al., 2013; Wynne et al., 

2010; Smith et al., 2020). In the longer-term, rising temperatures and shifts in precipitation 

patterns and runoff will likely alter water clarity via changes in algal blooms (Paerl and Paul, 



2012). Additionally, compounding factors including decreased ice extent, lake temperatures 

that are increasing at a faster rate than atmospheric warming (Austin and Colman, 2007; 

Woolway and Merchant, 2018), longer growing seasons, and altered precipitation/discharge 

patterns have become more problematic during the last century. Such factors can cause further 

declines in water quality, as well as negative impacts on human health and infrastructure.  

 

In a recent study, Smith et al. (2020) described the development of a water clarity index (KDI) 

for the Great Lakes and elucidated some of the relationships between synoptic-scale 

meteorological patterns and water clarity in the region. While previous studies have examined 

water clarity variability and trends in the Laurentian Great Lakes (e.g. Binding et al., 2015; 

Yousef et al., 2017; Dobiesz and Lester, 2009; Auer et al., 2010) or modeled changes in other 

lake parameters (e.g. lake temperatures in Trumpickas et al., 2009), to the authors’ knowledge 

none have attempted to model water clarity largely based upon historical meteorological 

forcings. Thus, building upon Smith et al., (2020), this research describes the development of a 

series of artificial neural network (ANN)-based time-series models to empirically predict 

shorter-term variability and longer-term trends in water clarity in the Great Lakes. Once 

validated, these ANN models are then simulated on historical climate data to generate a 

complete reconstructed time series of water clarity in the Great Lakes from 1979 to present, 

and applied to forecast model data to produce a 3 year reforecast of water clarity, and an 

ongoing real-time water clarity outlook. 

 

 

METHODS 

While we provide an overview of the data acquisition and treatment, the regionalization, and 

the process of atmospheric pattern classification used in this research, further detail can be 

found in Smith et al. (2020). 

 

Data and Treatment 



Water clarity data were derived as described in Smith et al. (2020). Briefly, all SeaWiFS (Sea-

viewing Wide Field-of-view Sensor onboard the satellite Orbview-2; 1997-2010; ~1.1km spatial 

resolution at nadir), MODIS/A (Moderate Resolution Imaging Spectroradiometer onboard Aqua; 

2002-present; ~1km spatial resolution at nadir), and VIIRS/SNPP (Visible Infrared Imaging 

Radiometer Suite onboard Suomi-NPP; 2012-present; ~750m spatial resolution at nadir) remote 

sensing reflectance (Rrs; sr-1) data covering the Great Lakes region were downloaded at Level-2 

from NASA's Ocean Biology Distributed Active Archive Center (OB.DAAC). Data for all three 

sensors correspond to NASA processing version R2018.0, which were mapped to an equidistant 

cylindrical projection with spatial resolution of 1km and geographic bounds of 41° to 49°N, 76° 

to 92°W. The Kd_lee algorithm (Lee et al 2005) was used to derive Kd(488) (diffuse attenuation 

coefficient for downwelling light at 488 nm) from these Rrs data. Log-transformed SeaWiFS and 

VIIRS Kd(488) data were scaled to match MODIS using linear regression coefficients determined 

from collocated and coincident satellite / satellite matchups. Specifically, y=10^(β1log(x) + β0), 

where x is the original SeaWiFS or VIIRS/SNPP Kd(488) data, y is the scaled value (to match 

MODIS/A), and the coefficients β0 and β1 are 0.0069477 and 1.0087 (-0.045826 and 1.1369) for 

SeaWiFS (VIIRS/SNPP). KDI were then calculated for each 1km pixel as the normalized anomaly 

in Kd(488) at various temporal resolutions. For example, monthly resolution MODIS data were 

used in regionalization analyses, whereby:  

 

KDImonthly=[monthly_mean_Kd(488) - monthly_mean_Kd(488)_climatology] / 

monthy_stdev_Kd(488)_climatology 

  

In order to analyze the multivariate climate-to-KDI relationship, the study domain was 

separated into 20 different regions based upon the KDImonthly data for each of the 1km pixels. As 

described in Smith et al. (2020), multiple clustering techniques and multiple cluster numbers 

were evaluated using 5 different cluster validation metrics. Among the nearly 50 options tested, 

a k-means based 15 cluster/region solution was ultimately selected. While the majority of the 

15 regions were geographically cohesive, some were split across multiple lakes. Thus, the final 



20 region solution shown in Figure 1 (and used for all further analyses) was based upon a re-

drawing of these regions in ArcMap, using the original 15-cluster solution as a framework.  

 

After regionalization, KDIdaily datasets were calculated similarly to KDImonthly, comparing daily 

mean Kd(488) values to climatological values defined as 30-day running mean and standard 

deviation. Prior to KDIdaily calculation, a 5x5 median filter was applied to the daily mean Kd(488) 

data. Mean KDIdaily within each of 20 regions were calculated for all dates with at least 5% valid 

pixel cover (see Smith et al., 2020), and this ‘regional mean KDIdaily’ is used in all further 

analyses (and is referred to simply as KDI hereafter). 

 

Stream discharge (m3/s) data were gathered from the U.S. (U.S. Geological Survey, 2017) and 

Canadian (Water Survey of Canada, 2017) streamflow gauging stations near each lake. Only 

stations with at least 25 years of data since 1979 were used. Gauging stations were divided 

according to the lake regions in which the stream ends; however, the nearest station from an 

adjacent region was used for regions which had no gauging station with at least 25 years of 

data.  

 

All historical climate data were obtained from the North American Regional Reanalysis (NARR; 

Mesinger et al., 2006) at the native 32km spatial resolution. Daily mean fields of sea-level 

pressure (SLP), 500mb geopotential heights (500Z), 850mb temperatures (850T) and 10-m zonal 

and meridional wind components were obtained for 1979-2015 for the spatial domains shown 

in Figure 1. Because the daily pressure and geopotential height gradient was determined to be 

more important in forcing regional KDI variability, raw 500Z and SLP data were normalized by 

subtracting the daily mean value from each grid point (i.e. creating spatial 

anomalies/gradients), which also helped reduce the seasonality of these variables. These same 

atmospheric circulation variables were also retrieved from the Climate Forecast System (CFS) 

for reforecasting (CFS-RF; January 2016 to December 2018) of the KDI. As CFS data are output 

on a different grid (0.5° x 0.5° resolution) than NARR, all CFS data were spatially interpolated to 

the NARR grid by using a Delaunay triangulation of the scattered two-dimensional data points. 



Delaunay triangulation tends to be more efficient and suffers from fewer artifacts than other 

interpolation methods, such as inverse distance weighting (Amidror, 2002).  

 

Prior to classification, all NARR atmospheric variables (raw fields of 850T and 10-m wind, and 

spatial anomaly fields of SLP and 500Z) were standardized for each location (i.e. z-scored by 

column), and then subjected to an s-mode principal components analysis (PCA – where rows 

are days and columns are locations; Yarnal, 1993). Principal component scores (PCs) with 

eigenvalues greater than 1 were retained and used in classification. An artificial neural network 

(ANN) clustering procedure known as self-organizing maps (SOMs) were then used to classify 

each set of PCs into a set of discrete atmospheric patterns (e.g. Figure 2 for 500Z; see Electronic 

Supplementary Material (ESM) Figs. S1-S3 for the other SOMs), with the ideal SOM architecture 

for each dataset selected based upon multiple cluster validation metrics (described in Smith et 

al., 2020). In order to create CPs (climate parameters) from the CFS dataset that corresponded 

to the CPs originally developed from the NARR dataset, CFS data treatment must follow that of 

NARR data. Thus, spatial gradients of 500Z and SLP CFS data were computed and then all 

variables were standardized and turned into PCs using a two-step process. First, ‘virtual CFS z-

scores’ were calculated by subtracting the NARR gridpoint means from the interpolated CFS 

data and dividing by the NARR standard deviations (at each interpolated gridpoint). These z-

scores were then multiplied by the loadings matrix derived from the NARR-based PCA, creating 

‘virtual CFS PC scores’ to input into the SOM neural network. The SOM is then run (not re-

trained) on the retained virtual PCs, producing a daily-scale classification of CFS data. 

 

In addition to the CP classifications, which assess the atmospheric circulation over broad areas, 

local surface weather conditions will also be evaluated for their link to the KDI. These 

conditions were assessed via the Gridded Weather Typing Classification (GWTC; Lee, 2015). The 

GWTC uses of eight-times daily values of 6 different variables (2-m temperature, 2-m dew 

point, 10-m wind speed, 10-m wind direction, SLP, and total cloud cover) from the NARR 

dataset (at ~60km resolution) to identify 11 different spatiotemporally relative weather types 

(WTs; Lee, 2015), similar to traditional air masses. Calendars of daily historical and real-time 



forecast WT data from 1979-2018 were obtained from the GWTC homepage (GWTC, 2020) for 

areas over the Great Lakes. Since some of the 20 regions had multiple GWTC locations within 

their borders, a regional daily WT was derived by calculating the mode WT for all GWTC 

locations within each region’s boundaries.   

 

NARX Modeling 

Modeling of the climate-KDI relationship was completed using nonlinear autoregressive models 

with exogenous input (NARX models), an ANN-based time-series modeling framework that 

accounts for both the nonlinear relationships between predictors (climate variables) and 

predictand (KDI), while also incorporating the natural autocorrelation of both (Lee et al., 2017). 

However, to help minimize the computational time and eliminate collinear variables from 

entering the model, input variable selection (IVS) must first be completed. The possible set of 

predictor variables included 5 categorical variables: the 4 sets of SOMs, and the region’s GWTC 

WT (which were all turned into dummy variables), along with either the 4 (850T) or 5 (SLP, 

Wind and 500z) leading PCs from the circulation pattern classification process described above, 

up to 4 stream discharge gauges for each region (that showed significant correlations with KDI), 

a sinusoidal seasonal signal, a linear trend line, and lake temperatures. Each of these variables 

was then transformed into a lagged matrix of 0-28 days, based upon the maximum amount of 

significant lag between each variable and KDI in prior testing. These lagged matrices were then 

standardized and subjected to a PCA, producing a set of orthogonal PCs that have now 

accounted for both autocorrelation and collinearity in the set of potential predictor variables. 

Spearman correlations between each of these PCs and the regional KDI time series were then 

computed, with all significantly correlated (p<0.001) PCs retained for input into NARX modeling.   

 

As with all machine learning methods, NARX models learn relationships through iterative 

training. First, the time series of predictors (significant PCs from IVS) and predictands (regional 

KDI) are separated into three cohesive time-blocks: training (80%), internal validation (10%) and 

testing (10%). The modeler must also set two parameters, the number of neurons in the ANN – 

which equates to the amount of complexity and interaction in the model; and the number of 



delays/lags to include in the model. Using Levenberg-Marquardt optimization, through multiple 

iterations, the model then adjusts the value of weights (which connect each predictor to each 

neuron) and biases of each neuron, in an effort to minimize the mean squared error (MSE) on 

the training set of data. Using a technique known as early-stopping, after each of these 

adjustments, the updated model is then run on the internal validation block of data and the 

MSE is also computed. If, after a user-defined number (5) of steps, the MSE on the internal 

validation block of data fails to improve (decrease), then the model trained 5 steps prior is 

considered optimized. While early-stopping considerably cuts computational time, it also helps 

mitigate overfitting, as the final model can be considered optimized to two separate portions of 

the dataset. However, because the internal validation block of data is not completely 

independent of model training (as  it determines when the model stops training), the testing 

block of data is held out for external validation of model performance.  

 

Due to natural autocorrelation, the best predictor of most environmental variables (including 

KDI) is its value from the prior time step (the lag-1 value). Accordingly, the training initially 

proceeds using an ‘open-loop’ (OL) framework, whereby the model is fed the previous day’s 

values of observed KDI as an input into predicting the next day’s output. However, for real-time 

prediction for multiple time-steps ahead, there are no actual observed KDI values yet. Thus, 

once optimized on open-loop, each NARX model is then trained and run in a ‘closed-loop’ (CL) 

framework, whereby the model proceeds chronologically, feeding its own model output back 

into itself as a predictor at the next time step.  

 

Three other considerations must also be made while training NARX models. First, the ideal 

model parameters (i.e. the number of neurons and delays) are unknown and not easily 

estimated, though they should both be minimized to curtail computational time and the 

possibility of overfitting. To overcome this hurdle, a brute-force technique was used where 

every possible combination of the number of neurons (from 1 to 10) and delays (from 1 to 5) 

were used as settings in separate NARX models which modeled 50 different possible model-

architectures. 



 

Secondly, the weight and bias terms are initialized with random values, meaning that even with 

all other model settings being the same, each model will produce a slightly different result. 

Thus, every NARX model was trained 10 times and ensemble medians of these 10 permutations 

were used as the final model output time series, including those trained (and discarded) in 

brute-force testing of model-architectures. 

 

Finally, while the testing block of data is independent, this leaves the modeler with only 10% of 

the dataset from which to draw conclusions about model performance. However, as described 

by Lee et al., (2017), multiple NARX models, each with a separate 10% chunk of data designated 

as the testing block of data (and correspondingly different blocks of data then designated as 

training and internal validation), can be trained, and then the testing portions of each of these 

models can be reconstructed to form a complete time series of independent output data. 

Further, in this research,  with the same block of data as the training block, the internal 

validation and independent testing blocks can be flipped, meaning each 10% block of data can 

be used twice as the testing block, with slightly different portions of the models being used for 

training for each, resulting in 20 different possible ‘settings’ for dividing the data into time 

blocks. These reconstructed independent testing ensemble (RITE) datasets are used below for 

calculating OL and CL model performance statistics for the historical period (hindcast; 1979-

2015). 

 

Considering these 20 settings, the 10 permutations for constructing ensembles, and the 50 

different possible model-architectures, 10,000 NARX models were trained for each of the 20 

regions – or 200,000 total models. For each region, among the 50 possible options, the winning 

set of 200 NARX models (20 settings x 10 permutations of the best model-architecture) was 

ultimately chosen, and saved for use with CFS-RF data for reforecasting KDI. 

 

There are three different ways in which the models can be run: 1) OL hindcast, run once from 

the beginning of the time series to the end on open-loop (as described above); 2) CL hindcast, 



run once from the beginning to the end on closed-loop (as described above), and 3) CL 

reforecast, run in a ‘reforecast mode’ on closed-loop, which means the models are run for each 

day in the time series (as if one were making a daily forecast in real-time) and the actual 

observed past values of KDI are input to initialize the day’s model before it runs forward in 

closed-loop mode to produce multi-step ahead forecasts. Each of these modes of operation will 

produce statistics that will provide evidence of the performance of different aspects of the 

models: 1) OL hindcast performance which gives us an idea of how well the process can be 

modeled in general, and of the potential lead-1 forecast performance in real-time; 2) the CL 

hindcast performance gives us an idea of the confidence we can have in the ‘accuracy’ of our 

hindcast; and 3) a CL reforecast performance gives us an idea of what the real-time forecast 

performance will be within the lead-time horizons of interest. 

 

Overall NARX model performance was evaluated using Spearman correlations between the 

actual observed KDI time series, hit rates for extreme KDI events (both extreme clear-water and 

extreme cloudy-water events, demarcated as the top and bottom 20th percentiles of the time 

series), and the improvement of the NARX model over simpler models (e.g. that of a seasonal 

cycle and trend model, or a simple persistence model). These metrics are stratified in several 

ways: correlation of the whole time series, monthly averaged correlation (to estimate seasonal 

model skill), and annually averaged correlations (to examine interannual variability of model 

performance). 

 

 

RESULTS AND DISCUSSION 

Model performance varies by region and season, and expectedly, is much better using the OL 

framework (Table 1). Generally, the regions and seasons with the best OL model performance 

also had substantially better CL model performances. Seasonally, for most regions, the NARX 

models performed poorest in autumn and best in spring, followed closely by summer (Table 2). 

Geographically, NARX models are able to best recreate the daily KDI time series in Lakes Huron 

and Michigan – Regions 6, 8, 9 (in Huron) and Regions 17, 18, 19, 20 (in Michigan) each had 



open-loop rho>0.84 and closed-loop rho>0.65, with region 20 performing best (OL rho=0.92, CL 

rho=0.79). These qualitatively high correlations on OL highlight not only the flexibility of NARX 

models in being able to ‘learn’ the climate-KDI relationship, but also the potential for real-time 

forecasting. These better modeled regions share some similar characteristics in their time series 

(Figure 3), in which the early observational period (1997-2003) is dominated by large seasonal 

variability and slightly decreasing KDI values (clearing water), followed by an abrupt drop in KDI 

around 2004, and then a much more inconsistent seasonality and slow decline in KDI 

thereafter. These general trends in the water clarity of the Lake Huron and Michigan regions 

are consistent with results found in Binding et al (2015) and others who attribute much of this 

to reductions in phytoplankton biomass due to the colonization of invasive quagga mussels 

which increase water clarity via filter-feeding and also dramatically reduce spring blooms. 

Decreased phosphorous loading has also been suggested as a possible cause for these trends 

(Yousef et al., 2017).  

 

Relative to a simple persistence model, where the ‘predicted KDI’ is equal to the previous day’s 

KDI, OL models show substantially better skill (Table 1: R2%ImpAutoC = improvement of the r-

squared over the lag-1 persistence). For example, in Region 7, 1-day autocorrelation of KDI is 

only r=0.40, however, OL performance is markedly better (rho=0.74, r=0.80), yielding 48% more 

variability explained with this model. The better performing regions with this metric are those 

with the poorest CL model performance (especially relative to OL model performance). This is 

unsurprising considering that the main difference between OL and CL is that the former has 

actual observed KDI values as input, while the latter relies more on the exogenous (climate) 

variables. Still, this metric elucidates the relative importance of climate in forcing water clarity, 

which is mostly dominated by autocorrelation in the short-term, and other anthropogenic 

factors over the longer term (e.g. invasive mussels, fertilizer use). This also highlights the 

potential value-added in real-time forecasting of water clarity with climate variables. The ability 

of the NARX models to predict extreme KDI events largely coincides with the correlative 

analyses – Lakes Huron and Michigan have the best hit rates, with Regions 9 and Region 20 



having hit rates greater than 70% for high-KDI events, and greater than 53% for low-KDI events. 

Generally, extreme high-KDI events are more skillfully predicted than the low-KDI events. 

 

Compared to a model that just uses the seasonal cycle and a quadratic trend to ‘predict’ KDI, CL 

models do show a slight improvement of the r-squared in most regions, with some of the 

largest improvements in Lake Huron, especially R8 (22% improvement) and R9 (12% 

improvement). Overall, however, these relatively low scores indicate that, in CL hindcast mode, 

a large part of the model skill is derived more from seasonal cycles and/or trends in KDI more-

so than from the day-to-day weather variability. Important to note is that other sets of NARX 

models were fully trained and run on the anomalies derived from these seasonal/trend curves, 

but yielded negligibly different performance results, which underscores the robustness of the 

NARX methodology to the inputs used and its ability to ‘learn’ the seasonal and long term 

relationships between climate and KDI. 

 

The aforementioned statistics reflect model performance across the entire time series; 

however, interannual variability does exist (Table 3). When year-over-year correlations are 

examined on the testing block of the OL hindcast output, all regions show potential for reliable 

1-day lead-time forecasts, with small standard deviations from mean performance, and the 

best modeled regions having rho>0.5 for all years, with some years as high as rho>0.9. 

However, when examining the yearly output of the CL hindcast data, the skillfulness is much 

more sporadic. While some regions show rho>0.80 for some years, all but 3 regions (R10, R17, 

and R20) have at least one year which exhibits a negative correlation between NARX model 

output and actual observations, highlighting the need for caution when interpreting the results 

of the CL hindcast. Temporally, the NARX models generally perform better during the beginning 

(1998-2004) and the end of the time series (2010-2015). The poorer-performing middle time 

period (2004-2010) is expected as it represents the period with the most abrupt (and non-

climate-related) changes in water clarity trends and seasonality (especially in Lakes Huron and 

Michigan) as invasive species began colonizing the Great Lakes.  

 



One of the overarching goals of the grant funding this research was to examine the potential of 

water clarity to serve as an indicator of climate change. Overall, statistically significant 

decreases in KDI over the 1979-2015 time period are present in 14 of the 20 regions, along with 

2 significantly increasing regions (Region 3 and Region 14; Table 1). While these trends towards 

clearer water are obvious, teasing out a climate change signal from other (largely 

anthropogenic) non-climate related factors is difficult, a result noted in other research 

examining changes in fish abundance in the Great Lakes (Wuebbles et al., 2019).  Further, with 

warming waters, one probable result from climate change alone would be towards cloudier 

water conditions (i.e. increased KDI) accompanying increased rates of algae blooms (e.g. Paerl 

and Paul, 2012), rather than the general clearing trend that we observed.  

 

While previous research has noted the difficulty in determining the relative importance for 

each predictor variable that is used in an ANN model, a few different ways have been proposed, 

including the predictor-constant replacement method (Lee et al., 2017), the random 

permutation replacement method (Giam and Olden, 2015) and Garson’s algorithm (Garson, 

1991), among others. The current research explored each of these referenced options, with 

them all showing similar results. Thus, in keeping with the methodology used by Lee et al., 

(2017), the predictor-constant replacement method was used, whereby each model member 

was re-run setting a different input variable to a constant (zeros, the mean of the PCs) and the 

change in model performance (using median absolute errors) was noted. These changes in 

performance were then multiplied by the retained PC loadings saved from the IVS procedure 

described above to determine each variable’s contribution to the model. Results show that the 

linear trend included in the model was the most important, especially in the well-modeled 

regions of Lake Huron and Lake Michigan; and the seasonal signal played the largest role in Lake 

Huron’s sub-regions. However, among the climate-related variables, on average, the PCs of 

500z play the largest role, followed by the MSLP PCs, 10m-wind PCs and then discharge (which 

plays a major role in the better performing regions, e.g. R20 and R9; Table 4). While the 

categorical CPs play much more minor roles everywhere, the patterns of 850T and 500Z are 

consistently more important than MSLP and Wind CPs. This is likely due to the strong seasonal 



variability in the frequency of 850T and 500Z patterns (compared to the MSLP and Wind 

classifications), as KDI is also highly seasonal. This result, along with the relative importance of 

stream discharge in impacting water clarity, was noted in previous research using correlative 

analyses to examine the relationship between KDI and these same SOM-based circulation 

patterns (Smith et al., 2020). Because KDI is also strongly seasonal (Figure 3), summer-dominant 

CPs (often relating to more zonal flow and less precipitation) are associated with lower KDI 

(clearer water), while the winter and spring-dominant CPs, are more often favorable for 

precipitation events, and are thus associated with higher KDI (Smith et al., 2020). Smith et al. 

(2020) also noted that Wind and SLP patterns generally correlate more strongly to KDI in Lakes 

Erie and Ontario, a result which is also noted here. However, these patterns also are important 

factors in the NARX modeling of parts of Lake Superior, an area where Smith et al. (2020) 

showed less association. Because SLP and wind play the smallest roles in impacting KDI 

(perhaps due to their weaker seasonality compared to 500Z and 850T patterns) interpretation 

of their relative importance from region-to-region is tenuous, especially in Lakes Superior, Erie 

and Ontario, where NARX model performance is generally poorer.  

 

The best indication of real-time forecast skill at longer lead times can be determined from the 

performance of the models when run in ‘reforecast mode’ (Figure 4). Herein, we ran the 

models in reforecast mode on an entirely separate series of data, from 2016-2018. 

Theoretically, the OL results noted above will be identical to the reforecast model skill at a lead 

time of 1 time step (i.e. 1 day, in this research) because the default for OL models is to perform 

1-step ahead predictions. However, because we convert the OL models to CL and then retrain 

them (to improve CL performance) and we are using an entirely separate time series of data for 

reforecasting (2016-2018), our performance in reforecast mode will differ than the OL 

performances noted above. The effect of this is that at shorter lead-times model performance 

suffers slightly by comparison to OL results noted above, however, performance improves at 

longer time horizons relative to persistence. For example, in Region 6, while the lead-1 

correlation (r=0.73) between NARX models and observed KDI is only marginally better than the 

lead-1 persistence model (r=0.70), at 60 days of lead time, the NARX models are considerably 



better (r=0.58) than 60-day persistence (r=0.12). In fact, all regions show a positive linear trend 

(from 1- to 60-days of lead time) in the r-squared improvement over persistence in these 

reforecasts, with the largest improvements generally in the same (better performing) regions of 

Lake Huron and Lake Michigan noted above. This noted, as with any prediction model, the 

absolute model skill (i.e. not relative to persistence) for all regions gets worse at longer lead-

times, and outside of Lakes Huron and Michigan, most regions’ model performance 

deteriorates to the point of being unhelpful. Still, with correlations approaching r>0.5 for these 

regions, sub-seasonal forecasts of water clarity may prove valuable.  

 

 

CONCLUSIONS 

This research utilized nonlinear autoregressive models with exogenous input (NARX models) – 

an ANN-based time-series model – to examine the relationship between meteorological 

variables and a water clarity index (KDI) in the Great Lakes. NARX models were also used to 

hindcast KDI from 1979-2015 and to predict KDI over the 2016-2018 time period in a reforecast 

mode. Results show that regional climate variability is inherent to fluctuations in water clarity. 

Model performance varied seasonally and geographically, with models for parts of Lake Huron 

and Lake Michigan performing best, especially in the spring and summer months. Models in 

nearly all regions show skill beyond that of a simple persistence model (on open-loop) or a 

seasonal-trend model (on closed-loop), which highlights the usefulness of the modeling 

methodology and the relative importance of integrating meteorological variables into models of 

water clarity in these lakes. Of the 20 regions examined, models trained in six of the regions 

show promise for real-time forecasting past 1 week of lead time (r>0.5), and three of those 

regions at up to 60 days of lead-time.  

 

While this research shows promise for real-time predictions of Great Lakes water clarity using 

NARX models, there are a number of limitations that must be considered when interpreting the 

results herein. First, all of the results above are essentially based upon ‘perfect’ forecasts, i.e 

the exogenous (climate) variables, even when models are run in ‘reforecast mode’, are the 



actual observed (from reanalysis) weather conditions within each 60-day lead-time window, 

rather than the forecasted conditions for those days. Thus, due to deteriorating skill of 

weather/climate model forecasts at longer lead times, the results noted herein will likely suffer 

when applied in real-time. Still, with reliable weather prediction out to about 1 week, and the 

relative dependence of modeled KDI on previous values of itself (rather than climate models), 

its trends and its seasonal signal, the impact of this limitation on real-time performance may 

well be minimal, but undoubtedly deserves future attention.  

 

A second limitation is the lack of non-climate related variables as predictors of water clarity. 

While it is well documented that increased fertilizer use, invasive mussels, land use patterns  

and soil types within specific watersheds and a host of other anthropogenic and natural 

phenomena can impact water clarity in the Great Lakes, adequate data for these factors, at the 

necessary spatial and temporal scales for our modeling purposes, is non-existent. For this same 

reason, an input as important as discharge data was even relegated to a seasonal cycle, since 

real-time forecast data out to 60 days of lead time is not available for the streams found to 

have the greatest impact on KDI in each of our regions. As a result, there is a substantial 

amount of unexplained variability in KDI that simply cannot be modeled (short of collecting 

such data sets somehow in the future), and thus, despite the potential for real-time forecasting, 

the hindcasts of KDI developed herein should be used with caution, especially those outside of 

Lakes Huron and Michigan.   

 

In terms of potential future directions stemming from this research, currently ongoing research 

has begun real-time forecasting (or a Great Lakes water clarity outlook) in order to build up a 

long enough period of record for analyzing model performance in this capacity, while another 

future research avenue could use actual reforecasts archived from major modeling centers, 

such as NOAA’s Climate Forecast System Reforecast to examine the same. Due to the 

importance of discharge in forcing KDI, planned research will be looking to improve the skill of 

KDI forecasts by adapting the NARX modeling framework to model/forecast discharge at the 

lead times of interest (e.g. 60 days) based upon climatological forcing, and then nesting these 



discharge models inside the KDI models. Future case studies of the impact of specific extreme 

precipitation events on KDI may also help shed light on the contribution of stream discharge of 

water clarity variability (e.g. Cooney et al., 2018). Incorporating lake water-level data, which 

may partially govern rates of coastal erosion and sediment resuspension via lake bed erosion in 

shallower waters (Dusini et al., 2009; Valipour et al., 2017), may also enhance NARX model 

accuracy in future research. 

 

In addition to providing new information on sensitive regions of the Great Lakes subjected to 

fluctuations and trends in water clarity, a major goal of this research was to enhance awareness 

of the long-term changes and variations taking place in water clarity across the entire Great 

Lakes system. Particularly relevant are water clarity estimates near natural and cultural 

resources found in the Great Lakes that possess exceptional historic, archaeological, and 

recreational value to the region. Future research efforts focused on real-time satellite 

monitoring and forecasting of water clarity conditions will likely lead to more coordinated and 

timely management response to water clarity events, and improved recreational activity 

planning for users such as divers, kayakers, and snorkelers, thereby increasing regional tourism 

and facilitation of public access through NOAA, the National Park Service and other protected 

area management agencies in the region. 
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TABLES 

 

Table 1 – Model performance by region. Open (rho) spearman correlations between NARX 

models (on open-loop) and observed KDI, Closed (rho) is the same, except for closed-loop NARX 

models. CL HR (80%) and CL HR (20%) are the hit rates for extreme KDI events (defined as days 

on which the closed-loop modeled KDI and observed KDI were at either the 80th or 20th 

percentiles of their respective time series). R2%Imp is the percentage-point improvement of 

the R-squared statistic between the final NARX models and the observations versus that of 

either a seasonal-trend model (R2%Imp Cycle) or a persistence model (R2%Imp AutoC) – the 

former is calculated using the closed-loop NARX models, the latter is calculated using open-loop 

models. Delta KDI is the change in KDI from 1979-2015 using a linear regression. 

 

  
OPEN 

(rho) 

CLOSED 

(rho) 

CL HR 

(80%) 

CL HR 

(20%) 

R2%Imp 

Cycle 

R2%Imp 

AutoC 

delta   

KDI 

Superior 

R1 0.67 0.20 25% 29% 0% 22% -0.4 

R2 0.63 0.17 29% 21% 2% 21% 0.0 

R3 0.67 0.41 39% 42% 14% 16% 0.1 

R4 0.61 0.28 40% 22% 7% 17% -0.1 

R5 0.59 0.21 37% 26% 3% 18% -0.3 

Huron 

R6 0.88 0.64 50% 44% 6% 11% -1.4 

R7 0.74 0.15 21% 24% 0% 48% 0.1 

R8 0.86 0.70 59% 49% 22% 13% -1.7 

R9 0.91 0.76 73% 53% 12% 11% -2.7 

R10 0.80 0.50 42% 42% 4% 20% -1.2 

R11 0.84 0.37 35% 33% 6% 30% -0.8 

Erie 

R12 0.86 0.34 32% 34% 4% 27% -0.7 

R13 0.82 0.32 27% 32% 5% 18% -0.1 

R14 0.79 0.31 23% 34% 5% 26% 0.6 

Ont. R15 0.69 0.20 30% 25% 0% 22% -0.3 

Michigan 

R16 0.67 0.28 27% 23% 0% 26% -1.0 

R17 0.84 0.68 69% 50% 5% 14% -3.1 

R18 0.85 0.65 69% 49% 6% 12% -2.6 

R19 0.89 0.61 54% 46% 3% 13% -2.6 

R20 0.92 0.79 76% 60% 5% 8% -2.9 
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Table 2 – Averaged (across regions) monthly performance of NARX models on OL (open) and CL 

(closed) using spearman correlations. 

  OPEN CLOSED 

JAN 0.81 0.33 

FEB 0.77 0.28 

MAR 0.76 0.41 

APR 0.79 0.48 

MAY 0.80 0.50 

JUN 0.77 0.43 

JUL 0.77 0.40 

AUG 0.76 0.40 

SEP 0.75 0.33 

OCT 0.65 0.26 

NOV 0.76 0.30 

DEC 0.79 0.34 
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Table 3 – Range of interannual variability in NARX model performance for each region, 1998-

2015. Open is for OL models, closed is for CL models, min is the minimum annual spearman 

correlation for any calendar year, max is the maximum annual Spearman correlation for any 

calendar year.  

 REG 
OPEN CLOSED 

MIN MAX MIN MAX 

1 0.41 0.74 -0.40 0.57 

2 0.21 0.75 -0.27 0.57 

3 0.20 0.80 -0.27 0.58 

4 0.20 0.75 -0.05 0.57 

5 0.20 0.74 -0.06 0.49 

6 0.56 0.91 -0.34 0.72 

7 0.48 0.95 -0.23 0.62 

8 0.45 0.89 -0.12 0.77 

9 0.49 0.89 -0.22 0.82 

10 0.56 0.82 0.10 0.59 

11 0.67 0.91 -0.32 0.56 

12 0.70 0.89 -0.06 0.53 

13 0.62 0.88 -0.15 0.58 

14 0.66 0.86 -0.13 0.42 

15 0.38 0.83 -0.08 0.43 

16 0.44 0.71 -0.18 0.39 

17 0.41 0.83 0.08 0.60 

18 0.35 0.91 -0.21 0.68 

19 0.60 0.91 -0.07 0.62 

20 0.59 0.92 0.01 0.70 

 

 

 

 

 

 

 

 

 

 



Table 4 – Region-by-region relative importance of the climate (and discharge) variables in the 

NARX model ensembles. All percentages are relative to each other (i.e. each row adds up to 

100%). Each column is representative of the average importance of each of its components 

(e.g. GWTC has 11 weather types, so the GWTC column is the average importance of each 

weather type).  

VAR GWTC 500z 850T MSLP WIND 500pc 850pc SLPpc WNDpc DIS 

R1 8.4% 8.9% 9.1% 7.9% 8.4% 12.3% 11.6% 14.0% 14.1% 5.5% 

R2 7.1% 8.7% 8.4% 7.3% 7.5% 12.2% 10.6% 12.4% 12.2% 13.6% 

R3 8.0% 8.9% 8.9% 7.6% 7.8% 13.3% 12.1% 13.3% 13.2% 6.8% 

R4 8.3% 9.0% 9.1% 7.8% 8.2% 12.9% 11.5% 12.5% 12.4% 8.2% 

R5 7.1% 7.9% 8.3% 6.8% 7.1% 12.8% 11.2% 12.5% 12.1% 14.2% 

R6 7.4% 9.0% 9.4% 6.6% 6.5% 13.0% 10.3% 10.7% 9.9% 17.1% 

R7 7.6% 8.4% 9.2% 7.0% 7.1% 12.1% 11.7% 11.2% 11.3% 14.4% 

R8 7.6% 9.0% 9.5% 7.0% 7.1% 12.6% 10.5% 11.4% 10.5% 15.0% 

R9 6.6% 7.3% 8.1% 5.4% 5.5% 14.2% 11.0% 11.0% 9.5% 21.4% 

R10 6.9% 7.5% 8.3% 6.2% 6.8% 13.5% 11.5% 13.2% 12.5% 13.8% 

R11 7.4% 8.0% 8.4% 6.7% 6.9% 13.3% 11.9% 12.5% 12.2% 12.7% 

R12 8.4% 8.7% 8.9% 7.4% 7.7% 12.9% 11.9% 12.8% 12.6% 8.9% 

R13 8.5% 8.9% 9.3% 7.8% 8.4% 13.0% 11.5% 13.0% 13.1% 6.5% 

R14 8.0% 8.8% 9.1% 7.2% 7.5% 13.0% 10.9% 12.5% 11.8% 11.3% 

R15 8.7% 8.8% 8.4% 8.0% 8.4% 12.8% 11.8% 13.4% 13.6% 6.0% 

R16 8.0% 8.0% 7.6% 6.9% 7.5% 14.7% 12.1% 13.5% 12.2% 9.6% 

R17 8.0% 8.2% 8.1% 6.7% 7.1% 14.0% 10.9% 13.1% 11.9% 11.9% 

R18 7.8% 8.6% 8.1% 6.7% 7.0% 13.8% 9.8% 12.5% 11.4% 14.4% 

R19 8.8% 8.1% 8.2% 7.2% 7.8% 12.4% 10.9% 13.4% 13.5% 9.5% 

R20 7.0% 6.9% 6.9% 5.2% 5.4% 14.0% 10.0% 11.6% 9.7% 23.2% 

AVG 7.8% 8.4% 8.6% 7.0% 7.3% 13.1% 11.2% 12.5% 12.0% 12.2% 
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R7 7.6% 8.4% 9.2% 7.0% 7.1% 12.1% 11.7% 11.2% 11.3% 14.4% 

R8 7.6% 9.0% 9.5% 7.0% 7.1% 12.6% 10.5% 11.4% 10.5% 15.0% 

R9 6.6% 7.3% 8.1% 5.4% 5.5% 14.2% 11.0% 11.0% 9.5% 21.4% 

R10 6.9% 7.5% 8.3% 6.2% 6.8% 13.5% 11.5% 13.2% 12.5% 13.8% 

R11 7.4% 8.0% 8.4% 6.7% 6.9% 13.3% 11.9% 12.5% 12.2% 12.7% 

R12 8.4% 8.7% 8.9% 7.4% 7.7% 12.9% 11.9% 12.8% 12.6% 8.9% 

R13 8.5% 8.9% 9.3% 7.8% 8.4% 13.0% 11.5% 13.0% 13.1% 6.5% 

R14 8.0% 8.8% 9.1% 7.2% 7.5% 13.0% 10.9% 12.5% 11.8% 11.3% 

R15 8.7% 8.8% 8.4% 8.0% 8.4% 12.8% 11.8% 13.4% 13.6% 6.0% 

R16 8.0% 8.0% 7.6% 6.9% 7.5% 14.7% 12.1% 13.5% 12.2% 9.6% 

R17 8.0% 8.2% 8.1% 6.7% 7.1% 14.0% 10.9% 13.1% 11.9% 11.9% 

R18 7.8% 8.6% 8.1% 6.7% 7.0% 13.8% 9.8% 12.5% 11.4% 14.4% 

R19 8.8% 8.1% 8.2% 7.2% 7.8% 12.4% 10.9% 13.4% 13.5% 9.5% 

R20 7.0% 6.9% 6.9% 5.2% 5.4% 14.0% 10.0% 11.6% 9.7% 23.2% 

AVG 7.8% 8.4% 8.6% 7.0% 7.3% 13.1% 11.2% 12.5% 12.0% 12.2% 

 

  



FIGURE CAPTIONS 

 

Figure 1 – The 20 regions within which KDI is defined, and the spatial domain used for the 

classification of CPs (boxes). The larger (red box) domain is used for 500Z and SLP; the smaller 

(green box) is used for 10-m winds and 850T. 

 

Figure 2 – The SOM of CPs created for anomalous 500Z data (units are in meters). Above each 

map is a bar graph showing monthly frequency of occurrence (from December on the left to 

November on the right), with blue bars being winter months (December, January, February), 

green bars being spring months (March-May), orange bars being summer months (June-

August), and yellow bars being autumn (September-November). The dotted line above each 

indicates a 10% frequency of occurrence within a month. Figure modified from: Smith, E.T., Lee, 

C.C., Barnes, B.B., Adams, R.E., Pirhalla, D.E., Ransibrahmanakul, V., Hu, C., Sheridan, S.C., 2020. 

A synoptic climatological analysis of the atmospheric drivers of water clarity variability in the 

Great Lakes. DOI: 10.1175/JAMC-D-19-0156.1. © American Meteorological Society. Used with 

permission. Accepted for publication in the Journal of Applied Climatology and Meteorology. 

 

 

Figure 3 – Region-by-region monthly time series of NARX models (blue) and observed KDI 

(orange), 1979-2015 (x-axis). Note that the y-axis (KDI) varies in each subplot/region. 

 

 

Figure 4 – Region-by-region reforecast performance (blue line) vs. x-day autocorrelation 

(orange line), 2016-2018. Performance is calculated using Pearson correlations (y-axis) between 

NARX modeled KDI at x=1 to x=60 days (x-axis of each figure) of lead time and observed KDI. 

 

 












